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: #*
for a Class of Non-linesr Singular Tubegral Eguations

Jawes M., Sloss

1. Intyoduction

In this paper we shall consider non-linesr singular integral
eguations of the form
)
{(1.1) wlz) = Blz) + A waiz}k‘%{wgh} + \Plg,w(z),n]
ey

A j Blt,z.w{t) A1 at
i " By 2

b

vhere 3B, br » ¥ and N sre conplex-velued functions; Lr are
bounded complexevalued functionsls, %, 2 on ['y +the Cauchy principle
valve is understood by the inbtegral; A is s real or complexn

i<

parameter; L., ¥

» end N are snalybic functions {in a sense to be

explained) of A, Rew end Im w for L in some open conpeched
seb 'Fl\ containing the origin, Be w in sowme neighborhood of Re B
and Im w in sowe neighborhocd of Im B.

Tt is the parpose of this paper:

that

1. to show/if we know the sciubion of (1.1) for A = Ay € Byy
then within the class of functions {a{%,A}} =-the members of which
are H8lder continuous in 5 (fixed exponent) for % on [ and
gnalytic in A for A in some opsn connected sebe-thers exists s
unigue mewber w{z,A)} vhich is a solution of (1.1} on some

neighborhood RE'?\@ of Ay 5



{As an immediate consequence of this, we get the existence of

a unigue solution of (1.1) provided |Al is sufficiently swall.)

2. to show that if in addition to having (1) the analyvicity
requirements ve have (ii) & necessary comii.tion for s function
w(z,A) to be & golution is that there exist regilons B}\ and B
such thet if A € & then wlz,\) € B, for z €T (in particular
Eha c .&’1}9 then the solution obtained for A € ﬁiu can be continued

analytically to s solution for X beyond .8'?\05

3. to find esbimabes for how far beyond .,5'7\0 the golution cen
he conbinueds
4. o show that, under certain general conditions, the golution

can be analybically continued to all of ﬁ;\@

The primeyy wethods thalt have been used for parameter continuation
are: (1) the analytic wethod used in this paper, see also Bebaev [2]
(2) the Newhon-Kamtorovic method, see e.g. Moore {7)] and Anselone and
Moore {11 and their bibliographies; and {3) topologicel methods,
see e.g. Ficken [3], Kragnoselskii [6], and Pogorzelskii[9] and his
bi%liogm@hy;

Bonelinear singulay integral eqmtions arise in the non-linear
Riemann-Hilbert problem [5] and differential equations. Exemples of
the class of integral equations considered here, arise in free
boundary value problems of hydroelasticity and eleetroe}.asticity {51,
{101, {111, sng [12]. It was these latter problems that led o the
invegtigation of integral eguetions of the type cousideved in this

paper. Experimentally, it is necessary to get solutions for "large"



values of the paremeter; since only for large values ig it possible
to make vhysical measurements.

I% i&ﬂof interest to note that the susplcelon of the result and
the motlvation for its pursuil came sbout after Glen Culler kindly
pub an integral eguation of the type considered here, arising in
hydroelasticity, on an on-line cowputer. The computer resulis
indiceted, for the physical constants used, the vestriction that A

be smell, was unnecessary.
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2. Preliminary Definitions

Before stating the results we weke the following assumptions
and definitions.

By [, we shall wean s simple closed conmbour.

DEFINTPION 1. Iet H{Ww), v = (v Vs 2"'“"’n)’ o< v, S 1, be
the set of all complex-valued fuactions ¢{t), *t = (tlfte,,.,,tn),
defined for cowplex & 3 on I, 1% J=n, end for vhich there exist
constants %;(9('%4 3) , 1% 3<mn, such that

Yy

lo(t) = o(2)] = Zk SRITREN
j=1

for all complex tj and Zg’ 1=3sn, on I,

DEPINITIONZ22. Det o{t) € H(v) and let

(2.1) Ity = My = (v)
where
(2.2) s me lo(o)]
? g€r
l2jsn
(2.3) 5V = mp xi:p(tm(zn .
t”zjé‘él 5 i‘i}pzjlvs

1sisn =1



Remorlk 1. It is clear that || ll. 3s @ norm on H{V) and it cen easily
be shown that H(v) equipped with thgs nore is & Banach space.

Remark 2. In the event t 3= rsﬁ.s 3 is replaced by ({r,,s,)

and =z =% J-x-iy p is replaced by (}:3 ,;,yj) in the sbove, then

It 5% Vs is replaced by

vj/'é
{(ré" xj)e + (53” 33}2} ®

Let C% = CX G X oo % O (o~times) where C 1s the complex

plane. Then IT = ' cos X I' (nebimes) © C%. ILet w(z) = u(x,y) + iv(z,y)

be defined on [ and ﬁw and ﬁ.,‘ be open subsets of C. Lst

O0<p 53 and

ﬁ,w(;z.) = {(u,v) ¢ usdv € B, for (x,y) € T and u+ iv € H{p)) .

DEFINITION 3. Iet

Alm,u,v,h] 2 (z,m,v,A)} € T x B, 2B =€

and let (Gl’qe‘”}‘ Yenp ;,z.) X ﬁ?\’ We shall say “Alz,u,v,A] is an
#
snelytic funcbion at (qlﬂgagzo) with H{v,4 ,m,b,c] coefficients"

and mean that A can be represented uniquely as

o

(2.4) Mlzmud) = ) ag(a) gy P(vg, a1
“3’1{9.@2{)

vrovided Iqull N !v»qel and fﬁ«hol are sufficiently small, where

aém(z) are cowplex-valued functicns in H(‘v)\ for zj €1



. *
ajkz(z) depend on ¢, ?s.o, and for some A(ql,qa,ho),

algy,950)s (a0, )s el a5A,),
(2.5) la gyeq (=M, = A*(qlpqg,lo)aj(-u)bk(«-»)cz(.--)

vhere A ; 8y, b, ¢ are real and independent of =z.

et "B?\ be an open subset of C and let

v(x,¥,4) = a(x,y,7) + ib(x,y,2)
be a complex~valued function

(2.6} '\’(333’;7‘) H (xsl‘hk) € Fxﬁk -+ C.

DEFINITION 3A. et A, € B, . We shall say “v(xz,7,A) is an
anelytic function at ?‘0 with H{V,ZO] (v = one cowponent wector)

coefficients” and mean that v can be represented uniquely as:

V(Xﬁypk) = z 3%" 33(393};\0)(7\“7&3)3
J=0

provided ikw?\oi is suffictently small, where e (x,y,4,) are
campiexwalueﬂ fupctions in H(v) for z+iy €T, and for sowe

ki3

i%cj(x,yzkc)ﬂv < A%(RG}

g :
where A (?&0) is & constant independent of {(x,y).



DEFINITION k. Iet ‘&w & C and )}}, o C be open arc-wise
connected sets and let Alz,u,v,A] be defined for
(z,u,v,A) € I‘nxﬁwxﬁk, We shell say “Alz,u,v,A] is an anslytic
function on &, (u)x 8, with H[v;A*ya,b,c,ql,qg,hol coefficients”
and mean that A 1s snalytic at each point

%
(9y,a008g) € &, (RIXE, with H[v,A",a,b,c] coefficients.

DEFINITION b8. It is clear what is meent by "y(x,y,A) is an

anglytic function on B, with Hlv,A] coefficients”.

Remexrk. If v(x,v,A) is en enalybic function at Z\O with
Hi{v,A1 coefficients, it is clear that it is analytic on some

neighborhood ‘3;& of A, with H[v,Al (A € ﬁa) coefficients

(4]
(1# A complex it is clear, 1f A real then extend vy to be an

anglytic function of complex variasble).

DEFINITION 5. We shall say "Alz,u,v,A] is a uniformly snalytic
#
function on .ﬁw(g,}xﬂk with H{v,4 ,a8,b,c) coefricients” end mean
%
that Alz,u,v,A] is analytic on ﬁw("‘)x“&h with Hiv,A ,ag.b,c,g;l,qg,kg}
coefficlents; and in addition; there exist constent: R u? Rv’ RA such
that for all (q_lgqe,iﬂg) € "%(“")X‘B’h and lu«qll <R, }v«qEI <R,

]‘Aw}\gi <R, end for all a {z) of {2.4) we have:

3kt

(2.8) o g2, s Aadv"e?

*
where A , a, b, ¢ are independent of =z and all points of
ﬁw(ﬁ;) X ﬁlo



DEFINITION 54, It is cleer what is meant by “v(x,y.A) is a
uniformly analytic function on .&A with H{v] coefficients”.

Remerk. If v(x,y,A) is en analytic function at by with
H[v] coefficients, then +v{xz,y,A)} is a uniformly anslytic function

on some neighborhood of A, with H{v] coefficients.

THEOREM 1. Given the uon-iinear singular integral eguation with

real or complex parameter As

¥y
(B)  wls) = Blz) + ) b ()P Io,u(8,0),v(5,M),A 0]
=l

1 wlo,z,a(E,N),v{5,M},1] o

+F[z,u(x,y) ;v {(=%,y) AT + 5y r Gz

where 2=x+iy €0, o=E+il€l;, ws=u+iv, and by the

integrel, we wesn the Cauchy-Prineipal walue. Assume

(H.1) B(z) and b (2) are single-valued functions of =

shich are in B(w), O0<n <1, for z on T, I (=), 5%

(H.2) L is & complex-valued linear bounded functional

¥* Fde
defined on the set of complex-valued functions continuous on I, with L =[Lf;
(#.3)  wylz) = uylx,y) + v (x,y) € Hiw)s

(H.4) Flz,n,v,A]l and Peve] are defined and single-valued
and single~valued
on Txf xB, end Nleee] 1s defined/on IxXTRE xB (shere & -

is @ nelghborhood of {wy(2z) : 2€T] and 0, 1is 2 nelghborhood

of 1, end they are analytic functions on B, (p) x & with




. A
Bl s0g58000009; s Gpsh ] cosfiiclents for ¥,

H[;:,,i‘o,af,’bf,ci,gqug,ko] coefficients for F and

H{mgl,an,bn,cn,q_l,qeﬂo] coefficients for W, 0 <p<p, <1

(8.5) w,(z) is a solution of (E) for A = A,.

Conclusions

(C.1) There exisbts & unique solution w(z,A) of (E) with

w(z,A;) = w,(z) which is en apalytic function of A on ﬁ’hﬂ with

H{s,2) coefficients where "&?\Q is the circle with center at A -ec

0
. [z 2
end radius e ¢ +e vhere

e = [(2a"10")® - &Y,
Hith
a = [2(am) 17,
8 = FAY {a})(uggvop}ko)saf(”"}gaﬁ(WW")} s
b = wax {bp(uo,veghe)ﬁaf(u»%bﬁ(*’”)} s
¢ = max icp(umvw?«.chcp(su);cn(»n}} »
and

U s c{L%rohozao TN (Err)”]x%m}noB

(see H.4 and Footnote to H.2) where K (u) is ¢he constent found

#
in the corollary to Lemmwa 2 below (viz. X (u) = wax{mC*(u)+Clen)l,

Clins) = positive constant depending on I and p,

C'(w) = sup [ lv=t{*"Har).
ter°r



{c.2} If A is resl then the solution is walid for

! a
e W PN .
0 ou¥e ge 0 ¥+ de

(c.3)

le(z,0) = wplzdll, = @4/ = 6(Ih=ny 1)

shere

&

* <1 X % %
= [} +'b e 26.1)  ,
(%) [a+b] L« ch 1ech

Proofs Before proving the theowvem, we shell state and prove

several lewmmas which are needed in the proof.

IEA 1. Let o(7,0) be & comolex single-valued funchion of

the two complex verisbles T gund ( for % € r, ¢¢€.5,

(B some region or line of the complex plane) and let

L. 3@(%2’}3 <M, TETD, (<5

@
2" i@(TQECQ) = @(Tlsglﬂ < RQ){U*}V)[PFQMTZ‘ 55 + !Cawglgv}?

Ti é rp {:i é ﬂ9 I = 192:5

0<py<l, O0<9vsl., Then the singular integral

N of7,¢)
B(5,0) = “gl‘?‘ e &



0

sgtisfTies

1. j8(%,0)] < i, + C*(a)k(p(m%

snd
. S b ¥

2 [B(tyC0) = Bty 6 ) < Clu, VIl V) Tegty I+ 1000, 17 ]
where

v o< v is an arbitrery positive constant less than v,

Clu,v' ) = positive constant depending ou T, pu, end the

choice of v%,
' . =L
C'{u) = sup X fret P ar.
t€r T

Proof: See Pogorzelski [k].

As & consequence of this, we have

LEMMA 2. Let o(7,0) € H{n,v), O<p<v<l, and

&{t,0) aj 2l1:9) 4 |
r e 'i;

Then

Lo #(t,0) € Hlwu)
8nd

2. [&(x,0)] s X Ho(r,0)|]

() {,v)

where

K{p) = maximCt () + Clun)}

with C{s.p) snd C*{(p) given in Lemma 1.




Proof: The fact that &(t,0) € H{y,n) follows immediabtely from
4 *
the fact that &(t,0) €H{u,v ) foranmy v < v by Lemma 1 and
B <V by assumption.
Bext, in the notation of Definition 2, let

boCr,ollg, 4y = My + B9 -

ki3
Then by Lemma 1, since p <V by assumpblon, we can checose YV =g

and geb
[2(x,0) ] = o, + €' )k, (u,v)
and
[2(5050) = Blty,0,)] < Ol )i b, b, P+ ageo 7.
Thus

11@{%9@‘35!(3“&,, y < mhy + fc*ln) + Si’;mz&)}‘%{m%’}

< KGw)llotr,0)g, 4y

where

K(e) = max{m,C (W) + Clu,pll ,

which proves the lemma.



i2

As & conseguence, we have the

COROLLARY: Iet o(7,5) € H{p,v), 0<y <v<1 andlet

_f olr,t)
2{t) = II" T ar .

Then

1. 3(%) € H{s)
and

2. o), s ' wletnedlg,
where

3% . ’
() = mae{m,c )+ 20{u,pnll .

Proof: The fack that @(t) € H{n) Lollows from 1 of lemma 2.

To obbtain 2 we specialize the proof of Lemma 2 o ¢ = .

13

Wext we shallneed

s 3. Ir oft,z) € H(w,v) and ¥(e) €H@), (Y,(z) € B{v)),
then

L. @(tgm)‘&(t) € H(L&pv)s (cp(t,z)xyg{z} g H(i’tﬁ’)):

and

2. (s 20, oy = loteszdlly, oy,

(”‘P(tyz)‘{fo(zw(&yvy s ll@('&sz)”m’v)ﬂ’éfo(zﬁiv) °

Proofs It is cleac thaet o(t,z)¥(s) € H{s,v) .

In oxrder to prove 2, lebt



loll, vy = 2, + 2plev) & i, = w0,

(2.9)
nWﬂ(mv) = m{p.@'&' k(P\ZI (M,V) ?
where
M, = wax lo(s,z)] W, = mex [¥(8))} ,
t,2€7T ter
(2.10)
M o,= mex |o(t,s)9(6)]
Q"z’ t’2§F ? ’
lo(tas22) = ¢{ty,2,)1
(2.11) k (b,¥) = sup o Qu e 3v s
J=1,2
[(ta) « y(ty)]
(2.12) ) = sup o, and
Ly €T ftp=ty |
33192
't Do Y '{3 - t :
(2913} X xy(ﬂw'\’) - sup 3‘3&7‘: PY L) }V( i,) o{ yz\;:_}‘%@l)i N
;p tjgzjﬁf‘ ati’,mtli + !Zg*"zl;
J=1,2

From (2.10), we see that

2,14 M. <HH .
(2.1%) B



Next note that for tj"zg €V, j=1,2

£ {oltyza) | Hley) = v(e) ] + (s lolty,z,) = ols),2,)
E3 ﬁq)k‘y(%”ta“’“ tliu + M\yk(p(kbsv}i”'te“ tltﬁ + ;zewzliv]

»zllv} .

= [k (o) + Mk (e, 9] Tep =t I + ay

Thus

Moy + v(p,,v) s M M\p + Kfi k (g,) + M‘yk@(g.,v)

P [‘i«% + zs:q,(;a g“v’)]{% + %{s&)}

which is the vesult. The proof for ot gz)\;ro(m) follows in exsctly
the same way.

How we are in a position to prove Theorem 1. The proof is by the
mathod of majorants.

By assumpbion (H.4), we have

(2.15.1) Flosu,v,h] = Z @ﬁm(@m»uo(ggmﬁ{w V(&M 1E A=A, 17,
3&1;9‘@:""0

(2.15.2} Plz,u,v,A] = }“ (z){u u (%y)] [vew (xsy)] [R=2y ]
i, k,.@r.o

(2.15.3) e, z,u,v,A] = Z ém(%wfuw u (8,11 [vev (%{ﬂ)%ki?‘»h 14 s

Jsk; 4=0



15

10
where ij,@(ﬁ) 5 fjm(z) and n sz(c’z) are complex~-valued
functions with p, £ €H{u) and n €H(ww,), O<p<p, <1

for o,z €. Also for 0,3 € I's

(2.16.1) O] RESRL O
(2.16.2) e g (21l < goednger
(2.16.3) lln ﬁm(%z)ii(mﬁl} noagbﬁcﬁ s
(2.16.4) li%ar(m)ﬂﬁ £,

where pO, 3’:’03 mo, apy bpg e p’“’"cn are constants independent of

z and © (these depend on Uy Vo and }«.03 but since wu,, Y,

?‘O will be held fixed, we omit mention of them) 3 and 1° is a constent.
We now inbroduce the followlng notation:
- \ =T £
(2.17.1) Pg[c,usv,ﬂ = Zpi{@}&;vﬁ , M= 0,1,% ...,
S=m
where
-]
(2.17.2) Bylou,v] = Z pgm(ﬂ}{uwuoi%’ﬂﬂ‘ﬁiwv@{%m}}k
§:k=0 '
and
A== h, 3
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{2.18.1) Fm[z,u,v,?\] = }:‘f'z{z,upvﬁ g’ m=0,1,2,...,
H=m
where
(2.18.2) Fylzu,vl = Zfém{zﬂua uo(x,y)l’ﬁ[v-vvo(xsy)lk 3
d k=0
(2,19.1) Nm[w,zﬁu,v,?t] = Z‘ﬁz{%z,u,v}'{‘e ,
B=m
vhere
(2.19.2) i,lo,20,v] = ankz(%z)ium uo(ﬁgﬂ)laiw veiﬁpﬂ)lk .
& o580

In this notablon we have:

(2.20.1)  T{PTIo,u(E,M),v(E,M,A1) = L{B, [o,u(8,M),v(E,M 1}

+ B{P] [o,u(€,0),v(€,M),A1) ,
(202062) F[z,u(xsy),v(x,y),l} = §O§:Z$u(§g$y}?v(5§9y)3
+ Fl(zgu(x,y}gv(xgy),ﬂ

{2.20.3) Wlo,2,u(€,1),v(E,M),A] = 'i'io[cy,zww ]

+Nl{"’e 39



7

Thus (B) can be written:

2‘@
(8 (a) = B(z) + ) b (2)EEH1o,u(8,0),%(2,M1)
& |

ﬁo[%%u(g{ﬂ) »¥{E,0)]

. 1
+ olz,ulx,y),v(e,y)] + 55 ‘Yr' Py o

+ Z br{Z)L{Pg[G'su( £,M),9(E, M)A 1% + Flizsu(xa&’} R{EHINY|

r=().
. 1 j‘ N‘E[Bﬁzyu(‘gﬁ'ﬂ)ﬁv(gﬂn)ﬁx:‘
2ri P T = % -
By (H.5) wo(z} iz & solution of (B} for A = Aps Le®oy A mO.
Thus (B) can be written asg
%o
() w(z) = wy(s) + ) b (2)B(PTo,u(8,M),v(E,1])
)
% Flfzym(ﬁsy)avizrb’}s?\l
iﬁifm%u(gs'ﬁ}gﬂ%;'ﬁ)gm
de .

-3
*
2ni r @5
He now try to £ind & solution of the Torme
(2.21) w(z,h) = u(x,y,0) + iv(z,y,1)

(¢« and v not necessarily real), where



i

(2.22) w(ayh) = ) g w(=y)R%  w veal end € Hlu),

&

s

(2.23) v(x,gyz‘h) = «g%q vk(xg;y'}'?zkg v, real end € H{u ).

§
Lr-is

Since P = B = 1= we s i 1f
Since K?l{e“,g.,ko} @1&“37\0} N‘,’Lz‘"“”ko} 0 we see thab if

wi{z,A) is %o be @ solution, we wmust haves
) Y
v Q
uk(xyy) = S ‘a(xsy;?ﬁg}s Vk(:gxy) Ty V(xf'é’.%?\()) )

.k. w2 lg235;oc:«» al‘ld

(2.2%) B, 2,70 + ivO(zz;,y) = u{‘;a:gyg?xo) s ﬁ.v{myﬂxo)
= WO{L&} .
Also
(2.25) w (z,y) + v (5] = %(KPMO} + v, (#£:55R,)
b
= zb?{:z}ie{ﬁiﬁtﬁgmmv@}} + ’f‘l{zy‘%,vl
=0
., B lo,mug,vy .
g r o
m d . g = 7 "

jn

Ly
=0 -

%

A e T 1 j’
- ¢ o -
) pp(2)e{p (93) & £ (2) + 57 T d

r=0

18



{2.26)

ug(xﬁy) o+ ivg(x:oy) = %x{xﬁy?lg) + iv}\}t(xsyske)

o
= 2 Z br{z)ﬂ{?ﬁg{@xucyve} + % ﬁfgﬁauos'wa}%(gsn) o+ ‘g‘; ﬁ;&w s ]*ll(gyn)}
=0

- 2{%2{2’;,110,%3 + ‘SB.E ?f'}_[“. Iul(:g:,,y) + % %"1[“. Yo, (2,50}

%)
G = B

. %:-.- j‘ {Eging%gvohg% t [0« Juy (0) «z-% A [oe. Iy (o)) ;
iR r

Yo
=2 ‘bx@(z}L{pZOe(mﬁ * Pyop (009 (8,1) + 1y, (dv, (5,1))]
r=l)

+ 2{Zonp(2) + £ 0. (2)u, (1,y) + £, (3)v, (z,7)}

R {a0a(es2) + 0y, (0,200, (§,T) + nyy . (0,2)v, (5,1)] o
LE s g =%

and in general u_.{(x,y) + ivml(xgy) is given in terms of uj(:x,,y),
. ) r
vj(xgy); 1< Jsn, andgiven funchions wviz, LERP fél&:ﬁ and

n vhere 0 € j+k+ 4 $ n+l., Thus if {2.21) is to give a solution

k4

of (E), w, and v must be determined in the above way. Moreover,

if (2.22) and (2.93) are convergent series, then w end v, determired
in the sbove fachion, will give & solubion of (B) for A ina

neighborhood "&h of fhg. Moreover, the solution will be unigue within

the set of analytic functions on this dﬁ“ﬁ with H(;;,) coefficients

since (2.21) iz a general representative of such functioms. Thus the

proof of the theorem rests on showing that (2.22) end (2.23) sre



convergent sewvies when w, and v o 2Fe determined as indicated
above,

To prove convergence, we make the following observailonss

Ty
(2.27) unﬂ(xgy} + ivml(x,y) = zb?(z}L{ﬁﬁfPi,a(g,ﬂ),v{g.g}}}
r:'-_o

+ 8, [Boul(z,y),v(...}]

g = 2

1 %n[l%gu(g:“)y"f( oendl
* B fr do

for wn 20, where

(2.28) @7 (&M, w(E,M] = ) ph (el I e e

iSjekradnrl
sl

for nzl; wié"k) is & polynomial of degree S n+les in its

arguments with positive rational coefficients. Similarly for the cases
¥, . £ s
when P is replaced by ‘Fl and N, then P jks(@) is replaced by

{c,2) respectively.

fgkg(z) and  ng,

With the idea in mind of showing that (2.22) and (2.23), with

ot and Vol determined as indlcated, are convergent, we consider

the auxiliary equation

Yo
(2.29) o{z,y) + iB{x,y) = '%(2) "‘L%bo zﬁ"‘{{@?(ﬁi;y)g&'(x‘sy}sk}
=0
+ glti?(xpy}y@(xzy)ykl

+ (2m) M (o), Loty ) e, ) A



{note that the right-hand side involves only «'s, mo B's), where

(2.30) Fyle,B Al =y ) adirelo- uy(x,y) 1308 - uy(m) A2 T

(2.31) g,la,B,0] = 2, ) advlell I 1 S

end
{2.32) ’i’?}_{%S Al = By agbgci }3{ Ek’i ]ﬁ s
J k=0
fe=l

where Lhe notation im (2.16.1), (2.16.2) end (2.16.3) has been used and

3 _
K (u) 1s the same as in the corollery to Lemms 2.

Hext we try to ©ind & solution of (2.20) which is an analytic
function on some nelghborhood of A, with H{p,A] coefficients,

i.@., we seek a solubtion

ez, y,h} + 1B{x,v,A)

for which
(2.33) el®,y,0) = z 25 o (,5) (=2 )"
m=0
and
- m
(2.34) Blayd) = ) L Blmy)(h-2g)

=0
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with o (x,y) and B (x,y) wveal.

Proceeding as before, ve find

(2.35.0) Olo(xpy) + :E.Bo(x,y) = 04(39357\0) + 5—3(3393'57‘-07
= Wo(z) = uy(x,y) + dvy(x,y)

and

L

(2.35.1) ﬂ’l(égs}’} + iﬁl(x:y) Wk(xsbﬁkob + iﬂk(xﬁ‘?fﬂ\o}

i

# .0 RS I
L TP %Sy * £58p + (2r) g (;;,}necn .

Thus Bl(x,y) = 0. In general we get:

@ .. {(x,y) = positive constant ,
(2.35.041) wkl

B (2¥) =0, a0,
¥More specifically:

Yo
#® 0 v 3 -
= 5Lb X@ngPlga,ﬂ & ﬁ*ﬁ{ﬁlxo"s@} + (2m) K (u )@n[??ls‘)f:;ﬁ} s
r=l)

{2.36) o .

nz1l, vhere B 1s given in {2.28),

Wext, note that for n= 1,
IR, 7 el = B[P, ase]

since all of the azm(:x.,y) are constant for w > 0, the coefficients

v \ .
L b@a c, ere constant, and thus ﬁn[@lga’,ey} is the positive sum

of positive constants. Thus



a3

(e 37) Hﬁn[P;%amm = pbpcpe{éj;k% se9e pa’nya’ls sso s&n} -

1sjrkheasnel
s}

A similer result holds when we replace 5{ by 31. and 7?1 respecbively.

Thus collecting terms, we ge"c'that

(2.38) D R (AP,
I<irerssndl
sEl
where
- aipE d .k o B8
(2.,39) Ujks L r@p % pbpcp % i’Qafb}S f + (zr)” Iy (p,)noanbncn .

We now return to (2.27) and note that for n 2 02

)
(2.40) g (20 2, G, < %° g@ 148, L5 n(&, 1), v( . 31,

+ Hﬁ'ﬂ[Fyu(Kyy);V( van) }Up‘

j» &, [%,u(8,M),v(...}] GQ’“ .,

+ (2m)™t “? pa— X

But



2h
“E’{R m”‘r u({€,;1) W(%aﬂ}ﬁﬂ& L{ﬁ Efsﬂ(gm}gﬂ%m)}}g

% 2 %L{Péks(@}@{'i?k){ul:ueﬂ”9 n@ 7“”’?&}3

i jvhktezntl
gl

REPY)
< E'POL ‘j@b?c}? gﬁ?;; ’ guls cevgVy H

= U5y 3, bl I g s gl - sl 1

where we have used {2.16.1) and the fachk that the cyg”j k) are polynomisls
with positive coefficlents.

In o siwlliar way, ve get
I3, L7 uley) s v,y ) U, = £ zag‘?} S “'*k){!%i{mwﬂv Y o

Finally ve get

H ju @nm,u(%m)ﬁ(%sﬁ)? &gn

r njm(@sz)wgﬁgk)zul(gy'Q}sa“,s‘i 3Vq90 ”,"fn}
= z i J G = F ' i
T )
18jtkesmntl H»
s&],

1)

ZK%)%&(%ﬁé“Jhﬁ%mw»ﬁ3%’1)

{where we have used the ccﬁz*ollm:‘y to Lenma 2)3

AODN RO PRI | SRR LA CR

(vy Iemme 3)3
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R | T R o

#
SK(&!‘)nﬂ nnns

{by (2.16.3)).

Collecting the sbove results and cowbining with (2.27) snd (2.39)

gives
. . (3335) |
(2.01) o (a3 + 2w,y Gl s ) Ul Doyl oo eesltv 1
}.S,jv-:»m-sﬁml
szl

We next show thab the series for o{xm,y,A) + iB{x,y,7) dominastes

the series Ffor ulw,y,n) + iv(m,y.A) viz.:

(=<1 o0
(242) ) lo (my)+18 (m) IR > ) R fu (5,3) +1v_(x,3) 101
we=0 =0

where o + if ~ are given by {2.38), B,=0, m=21, end

) ) » 3 3 B . 2
ay + 18, = t»ao(z)y and where u + iv is given by {2.27) forz m 2 1
and uy + iv,) = woiz’}e Vore generally we shall show thet
(2.h2.1) Hog(xay) + v eyl < oy (o) + 38, (o),

To see this, note that

lhag o3} + wvg(a,y il = llog(asy) + 18503,

and from {2.25), {2.16.1) and {2.35.1)



]lu}_(x,y)e-iv (x,y)ﬁ £ 5L rabopoc * £50, + (er)” g* (u)n
w ggl
= oy + mlt!“,‘»

I claim that for all j =20,

"ajvs- ivélh < Hozé -%-iﬁﬁﬂﬁ.

This follows by induction on J. We know it is true for § = 0,1 by

the shove. Assume it is true for O £ J € w

0 we shall prove it is

true for Jewn.+1l, Ll.e., ascume

05

0
i
w,+iv s flor, + 1B 0=2j<m
iy e 2w, < foy+ 18,15 3
and consider Uy at iv% 4 for my = 1. Since by {2.35.0+1),
f)mo +1 % 0 and g’m., v, = positive constant for m, 2 0, we wust show

”ﬁma+l * ﬁ‘vmf,-s»'.‘i.”m = ﬁmma%.lup, e S

Note that gince wu, and v, are real,

J J

lagll olbogll, = thag s avell, < oy 18,1 = oy

for 1<J<m, by the induction hypothesis and (2.35.n41). But in

(2.1}, the right-hand side of the equation contains only Uss Vg

l=sji=sm

s thus by (2.41) end (2.38), for m =1,



gy * sl 5 2, U0ty oeesliny 1,3

1= jtkrasn 1l
szl
(3,k)
£ Z szis&s " [az‘_y@co;&%l

= ahb+l s

which gives the desired result, thet is {2.147).

The proof of the theovem will be complete if we can show that the

series for olu,y,A) + 18{x,y,\) 1s convergent. To show the convergence

of (2.35) and (2.34), we return to {2.20) and let
Kﬂﬁ'”‘Aog» Xmﬁmvgg ;\ﬂkw}.oo

Then {2.29) becomes, since ¥ 2 0,

e etV Ire 11516 $14 Fro wKr . ob
(2.43) %= Urply, p lapPmarfe it g, ) aximarte )
3,%=0 3ke=0
f=1 4=
s (@)W e, ) laxPiexFe st .
k=0
L=l
Let
a = max{apgaf,an}, b= max{hp,bfgbn}ﬁ e = max{cpﬁcf,cn} .

Then the series in (2.13) is mejorized by



(2.44) ) raxddrme)enst
3k, 4=0

where

2 % 0 wl %

U = cfl o0 By * Ty (em) g (;ﬂao} ’
and (2,44) is wajorized by

W) [(esw)x1d LRI

Jik=0
B=0
Thus if we can show
Lacd ‘*
(2.15) %= U L z

1w {(atbi 1= ch

has 2 uniqgue solution that is analytic im X, we shall have completed

the proof. But (2.45) has for its solution, which venishes at & = O

(2.46) ¥sde- P (k)

with

d = [2(atp) 1",
#*
H(R) = —om m;l.ix;:
a¥b L= i
which is an analytic functlon im A =2nd is the wigue solution of

(2.45) with X = 0, provided % 1lies within the circle centered st



(=ec,0) of radius Je°cP+ e wvhere
L) % o
e = [(2a"%")? - 2172,

Tuis proves (C.1) of the theorem.

For the case when A 1s veal (2.46) is an amalytic function of 3

for all

a a
A w < A< A YR, -
0 " o ca 0" s ac

which gives (C.2).
To prove (C.3), we note from (2.21), (2.22} and (2.23) that

w(z,1) - wy(z) = Z%— fu, (2,5) + ivk(x»y)ﬁk ”
51

then by (2.42,1) and (2.35.n+1),

€D
. Lok
(2.47) Itz 0= wgedl, = ) e 1K1y
k=l
= a"il‘x?y?i?g) o U»Q(xg;‘f}
where
&{xﬂ'ﬁX} = 5!(%33”93“30) @ 0&’(3‘%3»}&}

follows by (2.33). Replacing X by

Xm‘&wuo



in (2.43) and proceeding as before, we get from (2.46) that

a0 - uylmy) = @« o - IRD)

which with the aid of {2.U47) gives (C.3). This completes the proof

of Theorem 1.

3. BExistence, Uniqueness and Amalvticity im A for A Swmall

An immedlate consequence of Theorem 1 is the following existence

and unigueness theorem.

COROLLARY 11 Gilven the non-linear sipguler iotegral eguation with

real or complex peremeter A

¥s
(8)  w(a) = Blz) + 1 ) b (e)L{P"[o,u(E,M),v(E,M),A])
p=0

+ AF[z,u{x,y),v(x,y),A] + A r Bls,2,u(E,M),v(E,M),1] o

2ﬁitr Lo EE A

where z =%+ 1y €T, o= &+ 11 and the integral is understood to be

the Cauchy-Frinclpal value. Assume alsos

(H.1), (H.2), end (H.Lh) the same as in Theorem 1 with 3, =0 and

wo{z) = B(z). Then

(C.1) There exists & unique single-valued solution w(z,\)

of (Eo) vhich is an anelytic functiom of A on ﬁ’}x with H{w,A)

coefficlents where £ 1s the circle with center at -ec znd redius

Je? P + e where the notation is the same as in (C.1) of Theorem 1.
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(c.2)

o(zn)- B, € @ - /&2 - +([A])

where the notation of (C.1) and (C.3) of Theorem 1 is used.

Proofs Speclalize Theorew 1.

b, fpalytic Combinuation with Respect to X

We aere now in & position to consider the analytic continuation of

the solution with respect Lo the perameter A.

THEOREM 2. (Continuation of the solubion in parameter space)

Given the mon~linear singular integral eguebion with real or complex

paremeter A

Yo
(B) w(z) = B(z) + ibr(%)ia{lﬁ’?{@",u(%,T})ﬁ(gy'ﬂ}913}
res)

€M), v(E,M)1 ] o

@ = &

Nlo,z,ul
+ Plz,ulsx,y), vix,y),A] + 2;—1 IYV +%s

vhere z =x+3y €T end o= E+1N €T and the integral is

understood to be the Cauchy-Principal velue. Also assume:

(#.1) B{z) and b r{z) are aingle-valued functions of 2 which

are in H{w), O<p <1, for z €T,

(H.2) & is & complex-valued linear bounded functioral defined

on the set of complex-valued functions continuous on T

(H.3) A priori hypothesis. For ,&.}\ end .,B'w simply-comnected

open sets in the A-plane (if N real then B, is open interval) and

u+ iv-plane respectively we heve: if A € B, end if w(z,A) €H(u) Iis




A2

& solution of (E), then
& .
w(z,n) € 8 (1) for z €T,

(.4)  Plz,u,v,A] and Fl...] are defined and single-vsluved

on TXxJB xB and Nloz,uv,A] on PxTxb xb andall are

17 tic Functl Flp) x B with H{ps B_e)
unlformly analvtic ctions on R Y with T8 po.,%myﬁe@ »

H(L’as f()ﬂa'f”bfﬁcf§ m H(wsulg uoﬂ&n»bﬁﬁcn) (0 < o < “’1 < 1}

copefifticlents respectivelv.

(HB) Ay €5 and wylz) =wla,)h)) = u(x,y) + ivy(x,y) € Hu)

with constant h, is & solution of (E) with wy(z) cB  for z €.

Conclugion. The unioue solution of (E) which is en anslytic

0

H(w,%) ccefficients, cen be uniguely continued to be a solution of (E),

function on e&% (see Theorem 1), on & neighborhood of A, with

which is an analytic function with H{w,A) coefficients, throughoub %
i

Proof: Iet A be an avbitrary oint of B;. Join A, to
?x% by means of a path lying completely in “8?0 Since ﬁ;\ is open,
the distance By of the path to the exterior of ﬁr& is > 0.

According to the conclusion (C.1) of Theorem 1 we know that there
is a unigue solution w(o)(z,h) of (E) which is an analytic function
on BO with Hly ,A) coefficients where BO is the circle with center
at }"0 of radius v = min{,rlmg} vhere ¥, = .a/e‘?"l c+e = ec and
where the notation is the seme as Theorem 1.

Fow we proceed sxactly as in the circle chalin wethod of complex

*
variables. Viz. choose points ?xog?algke,a“ ’Rp = A on the path
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2%
Joining A to A for vhich the distance, slong the path, between

adjacent points is <« r; put civeles O, of radiwe »r centered at

d

4 J=1,2,...,p. Let the open disc whose boundary is Cj he

denoted by Béa ‘Due to the uniformity, all circles are of the sawe

A

silze,
According to Theorem 1, we have a unigue golution w(o)(z,k)
of (%) vhich is an analytic function in B, with H{s,\) coefficients.
Moreover 1\, lies in B,, by construction, thus wl(z)-m @(0)(2gk1}
i3 defined and is € H(w) and is a solution of (E), and thus by (H.3),
wl(z) €<ﬂ:(w) for = € . By Theowem 1, with wc(z) replaced by
wl(z), we conclude that there exists a unique eolution w(13(zyh}
of (¥) vhich is sn apalytic function on B, with H{p,A) coefficientes.
The uniformity insuves thab mﬂl}is egnalytic in A on all of 31, and
by uniqueness of the solution of (B), we have wil)(zgk) and
w(o)(z,k} agree on the dverlap in the J-plage. Continulng in this
way ve get the solution of (E) at A  vwhich is an ssalytic function
with H{p) coefficients. This completes the proof since ﬁi is siwply connected.
In Theoreé é;2Qé knev, because of ﬁnifarmiﬁy, how far we could
extend the aol&ti@n in eédh analytic continuatién and the circles
were 8ll the same size. lowever it is important to consider the case
when we do not have uniformity. In this case, the circle into which

ve extend the aolution; dépend& on the previcus solubion. We shall

vesbrict ourselves bo the cage when A is real.
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Notations

(%.1) Al ,x,) = max {%(xlsxg}@afiximeﬁ9%@1332)} s

(b.2) B(ows) = max (B (oen)ibyloe )iy (ee)

(1.3) O = max (o (oo doegloesdyo (ool

(5.1 D(eve) = {2[4(...) + B(... 0170,

(4.5) Blo..) = (020" 000007 = B 0¥ s,

(4.6) B(oee) = C(ene)[x b°LD (ooe) + £ () + (207K (w0 (200}

#
{vhere X (p) is given in Theovem 1 end the corollary to Lemma 2),

(7)) elm,xg) = 1AL+ B(e )T UGB (e )T Clee R (e )T

(vhere € is arbitrary provided 1 > & > 0},

(4.8) Re(x, sty = (18)D(. ..} {E(. 00 ) + D0 )eL. )37
(4.9) H"E”{Kl’xg) = D{'}KE,’XE) «© ﬁ<°ﬁ@}“T§(°w°} 2
(4.20) F(x2,) = [Ha(oooDRe(e0 )] s



THEOREM 3. (Continning continuation) Given the non-linear

ginguler integral equation (B) with resl parameter A (see Theovem 2):

E
(6.1}  Seme as (H.1) of Theorem 2 with H‘br(z)uu' = v°.

(1.2)°  Seme as (H.2) of Theovem 2 with L = ||L].

(.3} A priori hypothesis. ILst 8 be an open interval

ni
(hﬁ,ho } conteining by &nd let B e an open simply-commected set

in the u+lv- plane guch that if A €.05,, w(z,A) € H{n) isa

golution of (B), then

w(z,h) € 8 (1) for 2 €T .

(H.4)"  Iet P'lz,u,v,Al apd Fl...] be defined and single-

35

velued on T x 5 X B, Wlt,zu,v,A] on I'xT xS x B, and all ave

A

analytic functions on "% X B with H{p) coefficients for ?* and

A
F, gand H(;},,g,l). (0<p <y, < 1) coefficients for WN.

® % %
Yore specifically: if (w +dv, 1) € B (u) x By s Zhen ve have

expansions for P°, F and N of the form (2.15.1), (2.15.2) and

#* 4 %
(2.15.3) with (uo,vm‘k) repleced by (u ;v ,A ) end in place of

(2.16.1) =~ (2.16.3) we have

(.11) Iy, s 2" ANl A el
(1.12) £ 0@, = f**(h*;,z.*}ag( ae }hlé( ven >c§g ves) s
(lh 15) “ﬁ&ﬂiﬁ(@) ﬂ(ﬁa;}}zlj = nﬁ.i sme )@g( see )bﬁ@i sas }@i{ sea ) »

& % %
vhere if w (8) = u (x,y) + iv (x,¥), then
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!l‘w%(z}ih £n .
L)
{H.5) AO @ﬁﬁ and

wy(2) = w(zoh,) = uy(a,y) + dvy(x,y) € 1)

§ - i f‘ al
(with !fwe(z}llg' £ h,) is @ golution of (E) with w.(z) €8, for

% &I

#* ’ .
(H.6) Let the unique golution {see Theorem 1) of (B} im H{p)

which is an amalytic Funcbion of A, Dbe velld on the open intervel

1,2 . " AN
("\o’?‘o) containing A, gad asmume {gohg) f::ﬁy

Conclugion: JFor k&1, let

o]
= = 1 ¥ e § ¥
Oy = oty o0y o) = (Bl A L 017 Bain ]

Where

By = By s Helly ol q) s

e ¢
Py = A+ Beliny oy 0 o

Then %y = 0 ands

Cage 1. If 9 21 for k=gome K20, then we can uniguely continue

: : 2 , 1,
the golubion to the right of iy oubt 3o (iyA }e

Case 2. If G <1 for k= gome K=1i, fthen we cen continue

the solution, after w continuations mw 2 X, at least to

Sl @
% = wia{d, , A}



waere

E k=1

K
Loy + Bligagh{is ) [lay+ =@ ra-aq)™ Tay}
. 4=0

k=l §=0

with

O = MGG 0ne iG]

and 1> &>0 is as swall ss we like.

Cage 2.1. If, for m arbitrary but fized,

O<g= min {g <
makz’i%

then we can tonbtinue the golution, after wmw

i,

conbinuations, at leeat

bo the right of &, 82 far as

b= min (A, kY
¥hers

- ‘ 3 o oL

{51k} o= dg + Balhyng) =52 .
In particular, if 0 < q = inf{qk} <1 and

“ k>l
Rel(h, A}
2\ g9l
(4.15) Q> L - i
Ay <%

then there exists an m, puch thet after m, continuations we reach

a7
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w3
?\.0,

#%
i.e., out to (}Lgf,}\o ). my can be taken to be such that:

i.e., we can continue the golution to the right end point of F,

336
Re(h oA ) = (1-a)(A, -2,)
Be(n .2 ) * _(lwq.)?so

qma+l <
Proof: According to (C.2) of Theorem 1, we have a unique solution

#{z,0) in H(p) for

3 = <228,
(4.186) A=hy o= d ¢ (1 e)(ko ko)

=Ry + Rg.,(ho,?xo)

where Rg is defined by (4.8).

Moreover by (C.3) of Theorem 1, we have

botzaxy = By (), + g (=) = wlzngdl)

S hg + Hé_,{ha,ho}

vhere H, is given by (%.9). ILet

i

hy + Ha(he,lo) .

by

If we let
v, (2) = w(z,n,) ,

then we can apply Theorem 1 again with ?\o replaced by 2, and ho

1
by hla Continuing in this way, we get

hy,q = B+ He(g,d ),

1

ey = M * Bl



vhers Hy and RE ave glven respectively by (4.9} and (4.8).

Thus
hgr = o+ (gmhgd + (peiy) # eoe s (i = A )
= hy * Bm( ,7\ Yo+ R.a{hlg}u Y 4+ cse & Bm(hk,
and
o . = Relbyohy ] Ry
el = T = .
Belby potyegd Ao,y
Hobe that
(3,173 ?‘”k-%-l = ),0 4 (}‘"3?;&0)(1«%@0%@0%—% ooa 4 @0219”‘?5@;“1)

frowm which Case 1 followse lwmediately.
bs for Case 2, note that for w2z K,

X Bel K Bl

1 2 !*('5&1@7&0){3—4’ S H%’* ﬁ% foifm}

=§ J=0 S=ld  2=0
E k-l

=% * (A h){m z ﬂqj‘% [(1d )/41»&%3} HM}

k=l §=0

vhich ig the result of (ase 2
{4.14) of Case 2.1 follows immediately frow (4.17) if we replace
U By g and uge (4.16},

If condition (4.15) holds, then we get

39



Re{n .4 )
}1‘~w18 £ = e; ”%WQWW
(1.28) FoeE O Ye

where § >0 ig some Tixed nuwber. Thug

homhg + {(1-g ){3&,0 Mg+ 8)
= lgg;mz’ + (L= %%13(?&?@4- 8)

= (1= +8)

#
= ko
2 mg'g'l 5 & %
provided My is such that ¢ = ?TEW which is always possible
+*
o

gince g < 1. Thus Cege 2.1 ig proved. To get an estimate for R

we giwply use the expression for & given in (4.18).
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By this iz meant:s 17 #£(o)} end glo) ave functions continucus
on T' then L{a(d)f(s) + v(A)elo)] = a(W)Liela)] + B(A)Llgls) ]

and |Lif(e)]l = Lf wex |¢{c)], where I'  is independent of £.
gel
|zl

Let T = Ll = sup ————mrrme
' max }£(0)]



